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Summary. Magnitude, distance and amplitude corrections (MDAC) made to observed regional am-

plitudes are necessary so that what remains in the corrected amplitude is mostly information about the

seismic source-type. Corrected amplitudes can be used in ratios to discriminate between earthquakes

and explosions. However, there remain source effects such as those due to depth, focal mechanism,

local material property and apparent stress variability that cannot easily be determined and applied as

amplitude corrections. We develop a mathematical model to capture these near source effects as ran-

dom (unknown) giving an error partition of three sources: model inadequacy, station noise and amplitude

correlations. This mathematical model is the basis for a general multi-station regional discriminant for-

mulation. The standard error of the discriminant includes these three sources of error in its formulation.

The developed methods are demonstrated with a collection of Nevada Test Site (NTS) events observed

at regional stations. Importantly, the proposed formulation includes all corrected amplitude information

through the construction of multi-station discriminants. In contrast, previous studies have only computed

discriminants from single stations having both P and S amplitudes. The proposed multi-station approach

has similarities to the well established mb versus Ms discriminant and represents a new paradigm for

the regional discrimination problem.
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1. Introduction

The ratio of regional P and S wave amplitude measurements at high frequencies can discriminate

between earthquakes and explosions (e.g. Walter et al. (1995); Taylor (1996); Bottone et al. (2002)).

An issue with using these amplitudes in a practical application is how to remove the effects due to

path, site and magnitude to emphasize the source differences. In Taylor and Hartse (1998), Tay-

lor et al. (2002) and Walter and Taylor (2002) the Magnitude and Distance Amplitude Correction

(MDAC) technique corrects each regional phase (e.g. Pn, Pg, Sn, Lg) amplitude as a function of fre-

quency in an attempt to make amplitudes independent of distance, magnitude and station. MDAC

is a simple physically based model that accounts for propagation effects such as geometrical spread-

ing and Q, and corrects observed amplitudes assuming the scaling of an earthquake spectral model

developed by Brune (1970). The idea of using an earthquake MDAC model to correct amplitudes

is that spectra from an explosion will exhibit a poor fit to the model which will be apparent in an

observed discriminant. Because of complex explosion source phenomenology it is not necessarily

obvious which combinations of regional phases will best separate earthquake and explosion popula-

tions. The MDAC technique allows the formulation of any combination of regional phases in any

frequency band, so that a diversity of discriminants can be explored.

In our development, the MDAC model for an event is assumed to be a known physical correction

equation – a function of frequency and distance only. The MDAC model partitions regional seismic

spectra into component parts. The instrument-corrected regional phase spectra can be thought

of as a convolution between the source-type and the path. In the frequency domain this can be

mathematically represented as

A(ω, ∆) = S(ω)G(∆)P (ω)B(ω, ∆) (1)

where S is the source spectrum, G is geometrical spreading, P is the frequency-dependent site

effect, and B is the anelastic attenuation with function arguments epicentral distance ∆ and angular

frequency ω. Here we have split the path effect into three components: 1) a frequency independent

geometrical spreading component, 2) a range independent and frequency dependent site effect, and

3) an anelastic attenuation component.
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The logarithm of both sides of Equation (1) gives

log A(ω, ∆) = log S(ω) + log G(∆) + log P (ω) + log B(ω, ∆). (2)

To remove distance and magnitude trends in the data, we correct the observed spectrum log Ao(ω, ∆)

so that

Y = log Ac(ω, ∆) = log Ao(ω, ∆) − log A(ω, ∆), (3)

where Y = log Ac(ω, ∆) is the corrected spectrum (MDAC residual). Equation (3) is used to

calculate corrected MDAC amplitudes Y that are then used to construct discriminants.

We develop the mathematics to form a multi-station discriminant constructed from the station

average of the corrected amplitudes Y . The proposed discriminant is built from random effects

analysis of variance (Searle (1971) and Searle et al. (1992)) which has been applied to other path

correction theories in seismology (e.g., Chen and Tsai (2002), Tsai and Chen (2003) and Tsai et al.

(2006)). We model any remaining physical structure in corrected amplitudes as a source-type bias

plus two random effect components – model inadequacy and station noise. This approach to dis-

criminant formulation properly forms the standard error of the discriminant with these two variance

components. Model inadequacy decreases with improvements in amplitude correction theory and

improved calibration (e.g., improved MDAC parameters). Station noise is reduced through station

averaging. MDAC (or any other path correction formulation) can be augmented with additional

corrections and the multi-station model developed here holds.

A compelling argument for using all available station information with the multi-station dis-

criminant is illustrated with a thought experiment: Four stations observe signals from a clandestine

nuclear explosion. Three of the four stations only observe the P wave (which may be the case for an

explosion). The fourth station observes both P and S. The P wave at the fourth station is anoma-

lously low causing the discriminant to appear earthquake-like resulting in a miss-classified explosion

if only this station is used (for example it is a priori determined to have the best identification

performance of the four). However, if all of the corrected P wave amplitudes are averaged and

combined with the single S wave measurement, a better estimate of the actual P/S ratio is obtained

and the event is correctly identified. The multi-station discriminant developed here is a technically

rigorous approach to resolve this apparent conflict among individual station identifications because

it properly combines the corrected station amplitudes with mathematical statistics theory.
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We compared individual station performance reported in Walter et al. (1995) to the multi-station

discriminant performance using a comparable MDAC model and data. Walter et al. (1995) report

equi-probable error rates of 13.4% and 18.1% for Kanab, Utah and Mina, Nevada respectively. The

multi-station discriminant exhibits improved performance with an equi-probable error rate slightly

less than 10%. We also validate the multi-station discriminant with an analysis of model assumptions

in Section 3. Section 4 demonstrates that the multi-station discriminant is also applicable to other

amplitude correction methods used in discrimination analysis, specifically regression corrections on

station discriminants. In Section 5, we present the results of a cross-validation study that compares

the multi-station discriminant performance to that of a best single station identification method.

The cross-validation analysis demonstrates significant improved performance with the multi-station

discriminant. We note that the same MDAC correction is used throughout this paper.

The multi-station regional discriminant is analogous to the formulation of the mb versus Ms

discriminant used for decades in seismic event identification (see Blandford (1982)). To see this, we

note that the calculation of a corrected amplitude (Equation (3)) is very similar to the calculation

of a station mb or Ms. In the mb versus Ms discriminant, station-averaged magnitudes are used

with potentially differing sets of stations in the calculation of each. Similarly, the multi-station

regional discriminant proposed here is constructed from station-averaged corrected amplitudes also

with potentially differing stations used in each.

2. The MDAC Discriminant: Model Inadequacy and Station Noise

Until now, no attempt has been made to obtain a realistic estimate of the error budget associated

with corrected amplitudes. Established signal processing research treats amplitudes as lognormal

distributed and therefore, in log space, properly formed differences are normal (Gaussian) discrimi-

nants. The conceptual representation of the proposed model is

Y = log(corrected amplitude) = Bias(source-type) + Event + Noise (4)

where Bias(source-type) is a source-type constant, Event is a zero mean random effect that varies

from event to event and represents model inadequacy from effects such as depth, focal mechanism,

local material property and apparent stress variability, and Noise represents measurement and

ambient noise, also with zero mean. The MDAC approach results in a Bias term for earthquakes
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that is near zero, whereas for explosions the Bias is non-zero indicating discrimination potential.

Equation (4) implies the expected value of Y is

E{Y } = Bias(source-type). (5)

For the mathematical statistics formulation of Equation (4), define the random variable Yijk to

be the corrected amplitude for source-type i = 0, 1 (earthquake, explosion), event j and station k

(observed data are denoted yijk). The linear model representation of Equation (4) is then

Yijk = µi + Ej + ε(ij)k j = 1, 2, . . . mi k = 1, 2, . . . nij . (6)

Analogous to Equation (4), Equation (6) reads Yijk equals a constant source-type bias µi plus a

random event adjustment Ej (model inadequacy due to local source effects) plus a station noise

adjustment ε(ij)k. The Ej are modeled as independent Gaussian random variables with zero mean

and variance τ2. The ε(ij)k are independent Gaussian random variables with zero mean and variance

σ2. Ej and ε(ij)k are independent across all subscripts. This assumption is consistent with effects

local to the source being uncorrelated with station noise. The subscript notation (ij)k for ε simply

specifies that observed station noise is different for each source-type, event and station. However,

the probability model for ε(ij)k is identical for each source-type, event and station. Equation (6) is a

standard mixed effects (random and fixed) linear model (see Searle (1971) and Searle et al. (1992)).

As an example, for two stations and three events the statistical properties of Ej and ε(ij)k are

succinctly written as
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where 0 denotes a zero mean vector and Σ is the covariance matrix of the model error components.

Define the indicator matrix
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to select appropriate vector/matrix elements for the matrix representation of Equation (6). Then
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where the mean vector θ and covariance matrix Ω are
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This two station and three event example is easily generalized across source-types i, events j =

1, 2, . . . ,mi and stations k = 1, 2, . . . , nij .
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2.1. Statistical Properties of a Station-Averaged MDAC Residual

For source-type i and event j, denote the 1×nij vector of corrected amplitudes as Y ′

ij = (Yij1, Yij2, . . . , Yijnij
).

Then generalizing to nij stations, Y ij is multivariate normal with 1 × nij mean vector θ′ij =

(µi, µi, . . . , µi) and nij × nij covariance matrix

Ωij =
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The station-averaged corrected amplitude Ȳij = 1
′Y ij/nij is normal with mean µi and standard

error τ2 + σ2/nij . 1 is a 1×nij vector of 1s. Note that forming regional discriminants from station-

averaged corrected amplitudes exactly parallels the methodology of the mb versus Ms discriminant

where both are station-averaged magnitudes.

Omitting the term Ej in Equation (6) implies that the corrected amplitude at a station is µi plus

station noise. As demonstrated with the following argument, this model formulation is fundamentally

inconsistent with the realities of seismic observation. The standard error of Ȳij with Ej removed

from Equation (6) is σ2/nij (τ2 = 0) and decreases as the number of stations nij observing an

event increases. This implies that if enough stations observe an event, this standard error effectively

goes to zero and the average corrected amplitude quickly converges to µi implying near-perfect

discrimination capability. By not including the term Ej , effects such as depth, focal mechanism,

local material property and apparent stress variability are not accounted for in the theoretical model

of an amplitude, and clearly these effects cannot be removed by station averaging. The model given

by Equation (6) captures these local source effects by admitting that they cannot be mathematically

(theoretically) represented. Treating local source effects as a random effect (Ej) compensates for

them as a component in the standard error of a discriminant. Also, the lower bound of Equation

(6) is non-zero and therefore consistent with realistic seismic monitoring.

Another important property of this model is the correlation between station amplitudes for an

event. The correlation (τ2/(τ2 +σ2)) implies that large adjustment Ej increases correlation between

stations because this random adjustment is applied to all stations observing an event, that is, the
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stations stochastically move together with near source model error. Small adjustment Ej implies

the correction model is good and is conceptually equivalent to stations with incoherent noise. Small

adjustment Ej also implies τ2 is small and the standard error of Ȳij is reduced further through

station averaging.

In contrast to the correlation between station amplitudes, correlation between station averaged

amplitudes used to form a discriminant is easily introduced into Equation (6). Two station averaged

amplitudes Ȳij and Ȳ ∗

ij are used to construct regional discriminants and they can be correlated.

For example, Ȳij could be an average P wave amplitude and Ȳ ∗

ij an average S wave amplitude.

The MDAC correction removes magnitude from amplitudes and so the correlation between station

averaged amplitudes used to form a discriminant is due to the correlation between model error terms

Ej . An observed model error Ej for Pg is linearly related to observed Ej for Lg with the correlation

indicating the scatter around the line of the relationship. Conceptually extending the example given

in Equation (7) to two amplitudes gives a block diagonal covariance matrix with the (1, 1) block for

Yijk and the (2, 2) block for Y ∗

ijk. Introducing a correlation ρ (covariance) in the off-diagonal blocks

between the E terms for Yijk and Y ∗

ijk provides the statistical model to calculate the standard error

of the multi-station discriminant given in Section 2.2. Calibration data yijk and y∗

ijk are from events

observed by stations for both source-types. For the analysis examples in Sections 3 and 4, and the

cross validation study Section 5, established methods are used to estimate the variance components

(τ , σ) and amplitude correlation (ρ) (see for example Searle (1971) and Searle et al. (1992)).

2.2. Discriminant Formulation

A discriminant is constructed from two different station-averaged amplitudes Ȳij and Ȳ ∗

ij (with

different bias constants µi and µ∗

i ). For specific regional phases the discriminant equation can

be represented with meaningful subscripts. For example, for a given event with source-type i,

the station-averaged corrected amplitude P̄g is normal with mean µi,Pg
and standard error τ2

Pg
+

σ2
Pg

/nPg
and L̄g is normal with mean µi,Lg

and standard error τ2
Lg

+ σ2
Lg

/nLg
. Note that if only

stations observing a discriminant are used, then nPg
= nLg

, however, this constraint on discriminant

construction is not necessary – using all available data to construct a discriminant is theoretically

sound with good instrument and amplitude corrections. With the inclusion of correlation ρ between
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amplitudes used to form a discriminant, the standard error of the Pg versus Lg discriminant is

SEP̄g−L̄g
=

√

τ2
Pg

+
σ2

Pg

nPg

+ τ2
Lg

+
σ2

Lg

nLg

− 2 ρ τPg
τLg

(12)

for both earthquakes and explosions. Equality of the standard error for both source types is an im-

portant model property because unlike discrimination analysis with unequal source-type variability,

it ensures that an earthquake with an unusually strong earthquake-identifying discriminant will not

be identified as an explosion. For example, quadratic discrimination (unequal source-type variance)

gives an explosion density function for such a discriminant that is larger than the earthquake density

function, and therefore incorrectly identifies the event as an explosion.

Current physical correction theory is unable to adjust amplitudes for all local effects. Section 3

demonstrates removal of magnitude from amplitudes with MDAC, however a clear correlation be-

tween observed MDAC amplitudes is shown which agrees well with the introduction of the amplitude

correlation ρ into the multi-station model Equation (6). Local physical corrections not captured in

MDAC are modeled as random and as discussed previously these local effects move out to all stations

(and therefore amplitudes), hence the correlations. When physical corrections for local effects are

possible, the model inadequacy terms Ej will be small, giving small values of τ , and the covariance

between station amplitudes will be small. In the limit, this conceptually gives discriminant ampli-

tude scatter plots for explosions and earthquakes (populations) that are small shotgun patterns of

data and the discrimination problem becomes one of physical correction and station noise.

Centering the multi-station discriminant relative to some constant and adjusting for uncertainty

gives a standardized discriminant. For example, centering relative to the explosion population mean

µ1,Pg
− µ1,Lg

forms the standardized discriminant

ZP̄g−L̄g
=

(P̄g − µ1,Pg
) − (L̄g − µ1,Lg

)
√

τ2
Pg

+ σ2
Pg

/nPg
+ τ2

Lg
+ σ2

Lg
/nLg

− 2 ρ τPg
τLg

. (13)

which is centered at zero for explosions and has a non-zero center for earthquakes. Equation (6)

mathematically formalizes the MDAC approach to regional discrimination and bases source-type

identification performance fundamentally on differences between the bias constants µi and µ∗

i . The

advantage to centering relative to explosions is consistency with the monitoring position to assume

all events are explosions and then prove otherwise with seismic signatures.
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Equation (6) also implies that ZP̄g−L̄g
has the same variance for both populations. As noted

above, imposing equal population variances is driven by physical basis considerations so that an

explosion with an unusually strong explosion-identifying discriminant value will not be identified as

an earthquake as could be the case with quadratic discrimination rules.

From Equation (13), values of ZP̄g−L̄g
less than a decision threshold predict earthquake as the

source-type identification, otherwise explosion. Section 3 illustrates performance with two decision

thresholds; a model-based threshold that gives equal missed-explosion and false-alarm error rates and

an empirical decision threshold. The model-based threshold is the average of the means of ZP̄g−L̄g

for explosions and earthquakes. The empirical-based threshold is simply the average of largest

earthquake Z and the smallest explosion Z. The empirical-based decision threshold is derived from

the tail behavior of the observed data and can be strongly influenced by the empirical distribution

of the calibration data. The model-based threshold is derived from the fit of model parameters to

calibration data. In Sections 3 and 4 we provide both to illustrate the difference.

3. NTS Data Analysis with the MDAC Multi-Station Discriminant

The data used to illustrate the discriminant ZP̄g−L̄g
(Equation (13)) are events at and surrounding

the Nevada Test Site (NTS). Data quality metrics ensure high quality observed amplitudes. These

metrics include signal to noise, station coverage and elimination of events incongruent with regional

phases. Discrimination with regional phases presumes that earthquakes with depths incongruent to

regional phases have been removed from identification consideration. This data quality requirement

is very important to the analysis that follows supporting equal variability for earthquake and ex-

plosion discriminant populations. Events were observed with combinations of four seismic stations:

Kanab, Utah (KNB); Elko, Nevada (ELK), Landers, California (LAC) and Columbia College, Cal-

ifornia (CMB). MDAC amplitudes from these stations were averaged in the calculation of ZP̄g−L̄g
.

Pg and Lg amplitudes were pseudo spectral measurements with a 6 to 8 Hertz filter window. After

applying data quality metrics (e.g., signal to noise and removal of events within 100 kilometers of

a station), the data table consisted of 41 earthquakes (EQ) and 159 explosions (EX) for a total of

200 events. Moment magnitudes (Mw) ranged from 2.6 to 6.1 for earthquakes, and 2.8 to 5.9 for

explosions. The spatial distribution of the events and stations is presented in Figure 1.

Amplitude corrections for discrimination remove the effects of magnitude and distance so that
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what remains in the corrected amplitude is fundamentally information about source type. Figure 2

demonstrates the removal of the effect of moment magnitude Mw from the Pg and Lg amplitudes

with MDAC. Note that the earthquakes are mean centered to zero. With amplitude corrections,

there is often correlation between the amplitudes used to form a discriminant. Figure 3(a) shows

MDAC corrected Pg and Lg data for earthquakes and explosions. The earthquake data exhibit more

Lg energy consistent with the physical basis of the Pg versus Lg discriminant. The model Equation

(6) assumes that the earthquake and explosion populations have equal covariance matrices for all

events and the calibration data under this assumption are given in Figure 3(b). These data are used

to compute the model parameters for Equation (6).

For both earthquakes and explosions Ej and ε(ij)k are modeled as zero mean with variances τ2 and

σ2 respectively. The assumption that the model terms Ej and ε(ij)k are uncorrelated is conceptually

valid because Ej represents source model inadequacy and stations (and therefore station noise) are

at least 100 kilometers from the source. Fitting Equation (6) to the NTS data in Figure 3(b) provides

calculated values of Ej and ε(ij)k. The distributional properties of these calculated model terms is

provided in Figure 4. The χ2 goodness-of-fit tests confirm that Ej and ε(ij)k are reasonably modeled

as normal random variables. The ε(ij)k for Lg (Figure 4(f)) have individual χ2 values for the tail

cells that are unusually large and with these removed the goodness-of-fit test returned χ2 = 8.05

with 3 degrees of freedom and p-value ≈ 0.04. This test indicates that the ε(ij)k for Lg exhibits

some kurtosis, however the residuals are reasonably bell shaped and are consistent with the normal

assumption. Figure 5 gives quantile-quantile (Q-Q) plots that further confirm that Ej and ε(ij)k are

reasonably modeled as normal random variables. The 95% confidence bounds on the Q-Q plots are

simulated (Lilliefors (1967)). Figure 6 empirically shows the correlation between model inadequacy

Ej for the two discriminant amplitudes. These data provide a value of 0.95 for the model parameter

ρ.

The fitted population models for ZP̄g−L̄g
with equal (pooled) variance of 0.48 are presented in

Figure 7. A goodness-of-fit test applied to the explosion population returned χ2 = 16.28 with 15

degrees of freedom and p-value = 0.36. A goodness-of-fit test applied to the earthquake population

returned χ2 = 13.31 with 15 degrees of freedom and p-value = 0.58. These two tests indicate that

the equal population variance and normal assumptions for Equation (6) is reasonable.

Estimated model parameters are provided in Tables 1 and 2. Using the fitted models, the

decision threshold is (Model = −0.89. From the receiver operation characteristic (ROC) curve in
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Figure 8, the equi-probable error is ≈ 10%. The empirical decision threshold is (Empirical = −1.27.

Figure 9 is a plot of the observed discriminants ZP̄g−L̄g
versus Mw, with (Empirical and (Model. The

empirical-based decision threshold is derived from the tail behavior of the observed data and can be

strongly influenced by the empirical distribution of the calibration data. The model-based threshold

is derived from the fit of model parameters to calibration data. The performance from Figure 9 is

provided in Tables 3 and 4. In this analysis, performance is reported as apparent (see McLachlan

(1992)), that is, all data were used to calculate model parameters and then discrimination analysis,

using all data, was performed with these same parameters. In Section 5 the MDAC multi-station

discriminant is shown to have better performance than that of a best single station approach with

a comprehensive cross-validation study.

Figure 9 suggests the possibility of a correlation between Z and Mw for explosions. There is

well-documented dependence of the Pg versus Lg discriminant on material properties at NTS (see

Figure 6 in Walter et al. (1995)). Explosions detonated below the water table in high-strength

media have larger Pg versus Lg values than those detonated above the water table in lower strength

media (see Figure 10 in Walter et al. (1995)). Containment practices at NTS dictate that larger

explosions are conducted at greater depths. Therefore, Mw is actually acting as a surrogate for

a rapid change in material properties occurring near the water table encountered by larger and

more deeply buried explosions. The apparent differences in compression to shear energy scaling for

explosions and earthquakes is also observed in published (and widely used) developments of the mb

versus Ms discriminant (see Stevens and Day (1985), Taylor (1996) and Bonner et al. (2006)). The

apparent correlation between Z and Mw is fundamentally due to sampling bias for the explosion

population – there are no large shallow explosions and no small deep explosions in this data set.

Were the explosion population to have these events, the apparent correlation would not be present.

Even with this sampling bias, the assumptions for Equation (6) are valid as demonstrated in the

previous paragraphs – both the earthquake and explosion populations can be reasonably modeled

as bivariate normal with normal marginal distributions.

4. NTS Data Analysis with a Regression Correction Multi-Station Discriminant

Prior to the MDAC formulation, discriminants were formed by first calculating a spectral ratio in a

common frequency band at each station observing the event (see Blandford (1982)). These station-
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centric discriminants are known to be robust to instrument response calibration and this calculation

also removes the effect of magnitude. In the literature, station discriminants are then corrected for

distance with a regression model built from earthquake calibration data (see Hartse et al. (1997) and

Bottone et al. (2002)). Analogous to the development in Section 2, define the random variable Xijk

to be the regression corrected station discriminant for source-type i = 0, 1 (earthquake, explosion),

event j and station k (observed station discriminants are denoted xijk). Then

Xijk = µi + Ej + ε(ij)k j = 1, 2, . . . mi k = 1, 2, . . . nij . (14)

For an event with nX station discriminants, the event discriminant is the average of station discrim-

inants X̄ij and the standard error is

SEX̄ =

√

τ2 +
σ2

nX
(15)

for both earthquakes and explosions. Note that in the multi-station discriminant, nPg
and nLg

amplitudes are averaged. Centering relative to the explosion population mean µ1,X forms the stan-

dardized discriminant

ZX̄ =
X̄ − µ1,X
√

τ2 + σ2

nX

. (16)

which is centered at zero for explosions and has a non-zero center for earthquakes.

In the context of this paper we calculate the difference of the observed station amplitudes Pg and

Lg. We then distance correct these station discriminants with ∆ and log ∆ as regressor variables

(see Hartse et al. (1997) and Bottone et al. (2002)). Applying this regression model to all events

gives distance corrected station discriminants Xijk – the residuals. The fitted population models

for ZX̄ are presented in Figure 10. Estimated model parameters are provided in Tables 5 and 6.

Using these fitted models, the decision threshold is (Model = −1.16. From the receiver operation

characteristic (ROC) curve in Figure 8, the equi-probable error is ≈ 12.5%. The empirical decision

threshold is (Empirical = −1.80. Figure 11 is a plot of the observed discriminants ZP̄g−L̄g
versus Mw,

with (Empirical and (Model. The performance from Figure 11 is provided in Tables 7 and 8. Like

the MDAC analysis in Section 3, performance is apparent. Note that the sampling characteristics of

the explosion population discussed in Section 3 are also prevalent with regression corrected station
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discriminants. The MDAC approach has slightly better performance than the regression correction

approach presented in this section – 7/159 missed explosions versus 9/159 with an empirical decision

line and 2/41 false alarms versus 11/41 with an empirical decision line. Missed explosions are a

serious error in the context of the treaty verification standard to “miss no explosions”, and from this

perspective the MDAC multi-station discriminant is a promising regional discriminant formulation.

There are two important differences between the MDAC and distance regression approach to

correction, and associated multi-station discriminant formulation. First, the MDAC multi-station

discriminant uses all available amplitudes from an event to calculate the station averaged amplitudes

forming the discriminant. In contrast, only those stations observing a discriminant are used in

the multi-station regression approach. Second, the MDAC correction is optimally tuned, specific

to phase and frequency, to station and path with earthquake calibration data. In contrast, the

regression correction, also constructed with earthquake calibration data, has no station and path

specificity in the mathematics.

5. Cross-Validation Analysis: MDAC Multi-station Discriminant versus Best Single-Station

We performed a cross-validation study to demonstrate that the multi-station discriminant results in

improved performance over a best single-station approach. A third approach was also investigated

and compared: for events not observed by the best single-station, it used information from the other

stations to make an event identification. We have called this approach “single-station plus.”

The figure of merit used in our analysis is operational burden per correctly identified explosion

which is conceptually a false discovery rate (FDR). Operational burden has two components; the

probability of identifying an earthquake as an explosion, and the probability of being unable to

determine source type because of missing measurements. In either case, an event would require

further analysis. Specifically,

FDR =
P (ÊX | EQ) + P ( ˆNoID | EX) + P ( ˆNoID | EQ)

P (ÊX | EX)
, (17)

where P (Â | B) is the probability an event is identified as source type A given the true source type

is B, and ˆNoID indicates that an identification was not possible.

To ensure direct comparison, all amplitudes used in the cross-validation study were MDAC

corrected. The study consisted of 5000 iterations. For each, a random sample of 80% of the events
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was selected from the NTS data. These data represent historic or calibration events and provided

the measurments to calculate the necessary multi-station discriminant parameters (τ and σ for

Pg and Lg, and ρ) for both populations, and decision rules (lines) for the three discrimination

approaches. For each approach the variability was assumed equal for both source types, giving a

linear discrimination decision rule for all three. In the calibration component of an iteration, data are

used to compute discriminant parameters, then with these parameters in hand event discriminants

are calculated and decision rules are developed. For the multi-station discriminant, ZP̄g−L̄g
values

are calculated. For both of the single-station approaches, only the station discriminant X = Pg −Lg

is calculated (e.g., no station averaging). The decision rule (line) for the multi-station discriminant

is simply the mean of the two source type means, that is, (Z̄EX + Z̄EQ)/2. For the single-station

approaches, the decision rule (line) for each station is calculated as (X̄EX + X̄EQ)/2, and with this

decision rule an FDR can be calculated for each station. The best single-station is then the one with

the lowest FDR. Ties were broken by choosing the station with the highest P (ÊX | EX).

The remaining 20% of events in each iteration served as test data and can be viewed as new events

requiring identification analysis. The discriminant parameters calculated from the 80% calibration

data were used to compute the discriminants for the test data events and then the decision rules

developed from the calibration events were applied. If a test event is not observed by the best

single-station an identification is not possible. In the single-station plus approach, if an event is not

observed by the best single-station, the decisions from the remaining stations are used – a simple

vote with the majority providing the event identification. If only one of the remaining stations

sees the new event, its decision is used as the event identification. If the remaining stations are

in conflict (no majority), then no-identification (NoID) is logged. For all three approaches, the

predicted source type was then compared to the true type.

FDR results are summarized in Figure 12. One can see the multi-station discriminant far out-

performs the single-station approach and also represents an improvement over the single-station plus

approach. The results of a closer look with FDR for only the multi-station and single-station plus

approaches are presented in Figure 13. The two FDR components are operational burden in the

numerator and probability of correctly identifying an explosion in the denominator. FDR is reduced

as operational burden decreases. The part of operational burden resulting from no-identification is

summarized in Figure 14. The results emphasize a serious limitation of the single-station approaches

– an unacceptably high no-identification rate. Because data from all stations are used in the multi-
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station discriminant, source type can be predicted for all events. The other part of operational burden

comes from the probability of calling an earthquake an explosion. These results are summarized in

Figure 15, and suggest that the performance of the single-station approach is slightly better than

the other two approaches.

FDR is reduced as the P (ÊX | EX) increases. These results are summarized in Figure 16. Here,

the multi-station discriminant has significantly better performance than the single-station approach,

and also represents an improvement over the single-station plus approach.

6. Summary

We have developed and demonstrated a new approach to the regional seismic discrimination problem

for nuclear explosion monitoring. In many ways, the method is analogous to that of the mb versus

Ms discriminant that has been in use for many decades. The idea is to individually correct observed

station phase amplitudes, as a function of frequency, for path and earthquake source scaling using

MDAC. Resulting amplitude corrections are then averaged over all observing stations prior to form-

ing a ratio. This approach contrasts sharply with that of computing a phase ratio discriminant at

individual stations. In the latter case, only stations that observe both phases or amplitudes are used

thereby excluding many potential measurements at additional stations. Research to develop regional

amplitude-based discriminants for nuclear explosion monitoring has focused on theory development

for seismic amplitude corrections. This paper develops a general model for corrected amplitudes that

properly includes correction model inadequacy and station noise as sources of error. This random

effects model correctly gives the standard error of a multi-station discriminant with a lower bound

that conforms to physical basis, that is, the standard error will not become unrealistically small

with an increase in observing stations. No source and path correction method is perfect and model

inadequacy is always present in a discriminant. Future work includes the use of maximum likelihood

(ML) magnitudes (Ringdal (1976)) for the regional multi-station and mb versus Ms discriminant,

and development of error budgets for each which will result in standard errors analogous to Equation

(12).
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Fig. 1. Maps of NTS events observed at regional distances by stations KNB, ELK, LAC and CMB. Explosions
are red and earthquakes are yellow.
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Fig. 2. Scatter plots of MDAC corrected amplitudes Lg and Pg versus moment magnitudeMw for earthquakes
(dark) and explosions (light). MDAC corrects earthquakes to zero mean.
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(a) Lg versus Pg.
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(b) Lg versus Pg with the explosion and earth-
quake data mean centered.

Fig. 3. Scatter plots of the MDAC corrected amplitudes Lg versus Pg for earthquakes (dark) and explosions
(light). Figure 3(a) exhibits discrimination because the earthquake and explosion populations are disjoint. With
the explosions mean centered, Figure 3(b) shows the data that are used to calibrate the common standard
error parameters (τ and σ for Pg and Lg, and ρ) for both populations.

Table 1. Estimates of Model Error (τ2) and Station Error (σ2)
for MDAC corrected Pg and Lg amplitudes. From Figure 6, the
estimated correlation between Pg and Lg is ρ = 0.95.

Phase Model Error Station Error

Pg 0.23 0.04

Lg 0.16 0.02
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(a) Fitted model terms Ej and ε(ij)k for Pg.
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(b) Fitted model terms Ej and ε(ij)k for Lg.
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(c) Histogram and fitted PDF of Ej for Pg. A
goodness-of-fit test returned χ2 = 10.80 with 13
degrees of freedom and p-value = 0.63.
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(d) Histogram and fitted PDF of Ej for Lg. A
goodness-of-fit test returned χ2 = 10.45 with 13
degrees of freedom and p-value = 0.66.

!0.4 !0.2 0 0.2 0.4
Ε!ij"#k

1

2

3

4

PDF

(e) Histogram and fitted PDF of ε(ij)k for Pg. A
goodness-of-fit test returned χ2 = 10.88 with 9
degrees of freedom and p-value = 0.28.
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(f) Histogram and fitted PDF of ε(ij)k for Lg. A
goodness-of-fit test returned χ2 = 28.73 with 7
degrees of freedom and p-value ≈ 0.

Fig. 4. Validation analysis for the distributional properties of Ej and ε(ij)k for the MDAC multi-station discrim-
inant. The MDAC model assumptions specified in Equation (6) are normality and independence of Ej and
ε(ij)k. χ2 goodness-of-fit tests were performed with the bin size chosen to give a best fit to a normal distribu-
tion. For each test, the degrees of freedom include subtraction of an additional degree of freedom to account
for model parameter estimation (τ , σ). All tests constrain the PDF mean to zero.
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(a) Fitted model terms Ej and ε(ij)k for Pg.
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(b) Fitted model terms Ej and ε(ij)k for Lg.

(c) Q-Q plot of Ej for Pg. (d) Q-Q plot of Ej for Lg.

(e) Q-Q plot of ε(ij)k for Pg. (f) Q-Q plot of ε(ij)k for Lg.

Fig. 5. Validation analysis for the distributional properties of Ej and ε(ij)k for the MDAC multi-station discrim-
inant. The MDAC model assumptions specified in Equation (6) are normality and independence of Ej and
ε(ij)k. The normal quantile-quantile (Q-Q) plots for Ej and ε(ij)k include 95% confidence bounds assuming a
normal distribution.
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Fig. 6. Bivariate plot of fitted Ej values for Pg and Lg. The calculated correlation ρ = 0.95. The MDAC
correction removes magnitude from amplitudes and so ρ is the correlation between amplitude error terms Ej .
Thus an observed model inadequacy Pg Ej is linearly related to observed Lg Ej with ρ indicating the scatter
around the line of the relationship.

Table 2. Source type bias (average) for MDAC corrected
Pg and Lg amplitudes.

Bias EX (i = 1) EQ (i = 0)

µPg -0.34 0

µLg -0.76 0

Table 3. Identification performance of the
MDAC multi-station discriminant in Equa-
tion (13) with the model-based decision
line &Model = −0.89. Rows are true
source-type and columns are identified
source.

ÊX ÊQ

EX 137 22

EQ 1 40
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Fig. 7. Fitted models of the multi-station MDAC discriminant ZP̄g−L̄g
for earthquakes (dark) and explosions

(light). The explosion population mean is ≈ 0 and the earthquake population mean is −1.80. The pooled
standard deviation for the populations is 0.69. The Q-Q plot is of the pooled earthquake and explosion data
(centered to their respective source type means), and it confirms that the earthquake and explosion data are
reasonably modeled as normal with equal variance.
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Fig. 8. Receiver operation curves (ROC) for multi-station MDAC (dark) and multi-station regression correction
(light) discrimination. The equi-probable error, identified by the 45 degree line is ≈ 10% for MDAC discrimina-
tion and ≈ 12.5% for regression discrimination. FA denotes false-alarm and ME denotes missed explosion.
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Fig. 9. Scatter plot of observed MDAC multi-station discriminants versus Mw. Earthquakes are dark and
explosions are light. The decision thresholds are &Model = −0.89 (light) and &Empirical = −1.27 (dark).
Performance counts are reported in Tables 3 and 4.
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Table 4. Identification performance of the
MDAC multi-station discriminant in Equa-
tion (13) with the empirical-based deci-
sion line &Empirical = −1.27. Rows are
true source-type and columns are identi-
fied source.

ÊX ÊQ

EX 152 7

EQ 2 39
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Fig. 10. Fitted models of the multi-station regression correction discriminant ZX̄ for earthquakes (dark) and
explosions (light). The explosion population mean is ≈ 0 and the earthquake population mean is −2.32. The
pooled standard deviation for the populations is 1.00.

Table 5. Estimates of Model Error (τ2) and Station Error (σ2) for the regression
corrected station discriminants X = Pg − Lg.

Station Discriminant Model Error Station Error

X = Pg − Lg 0.009 0.034

Table 6. Source type bias (average) for the regression corrected
station discriminant X = Pg − Lg.

Bias EX (i = 1) EQ (i = 0)

µX 0.368 0

Table 7. Identification performance of
the regression correction multi-station dis-
criminant in Equation (16) with the model-
based decision line &Model = −1.16. Rows
are true source-type and columns are
identified source.

ÊX ÊQ

EX 135 24

EQ 3 38
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Fig. 11. Scatter plot of observed regression corrected multi-station discriminants versus Mw. Earthquakes
are dark and explosions are light. The decision thresholds are &Model = −1.16 (light) and &Empirical = −1.80
(dark). Performance counts are reported in Tables 7 and 8.

Table 8. Identification performance of the
regression corrected multi-station discrim-
inant in Equation (16) with the empirical-
based decision line &Empirical = −1.80.
Rows are true source-type and columns
are identified source.

ÊX ÊQ

EX 150 9

EQ 11 30
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Fig. 12. Boxplots of 5000 cross-validated values of the FDR for the multi-station (MS) discriminant, and the
single-station (SS) and single-station plus (SS+) approaches to regional discrimination.
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Fig. 13. Boxplots of 5000 cross-validated values of the FDR for the multi-station (MS) discriminant and the
single-station plus (SS+) approaches to regional discrimination.
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Fig. 14. Operational Burden for the multi-station (MS) discriminant, and the single-station (SS) and single-
station plus (SS+) approaches to regional discrimination. Boxplots are from 5000 cross-validated values of the
P ( ˆNoID | EX) + P ( ˆNoID | EQ) component of Operational Burden.
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Fig. 15. Operational Burden for the multi-station discriminant, and the single-station and single-station plus
approaches to regional discrimination. Histograms are from 5000 cross-validated values of the P (ÊX | EQ)
component of Operational Burden.
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Fig. 16. Boxplots of 5000 cross-validated values of P (ÊX | EX) for the multi-station (MS) discriminant, and
the single-station (SS) and single-station plus (SS+) approaches to regional discrimination.




